

ANSI / IES RP-8-14 Roadway Lighting (and other topics)

Appendix 1 of Roadway Training Manuals

Lighting Analysts
illumination engineering software

ANSI / IESNA RP-8-14

AGENDA

- Introduction
- Classification Definitions
- Design Criteria
- Bikeways and Walkways
- Design Considerations
- ❖ Other stuff
 - Cutoff classifications
 - ■LCS & BUG

ANSI / IESNA RP-8-14

Purpose of RP-8

"To serve as the basis for design of fixed lighting for roadways, adjacent bikeways, and pedestrian ways." ANSI / IESNA RP-8-14

Purposes of Roadway Lighting

- ❖ Reduce Accidents
- Enhance Pedestrian Safety
- ❖ Facilitate Traffic Flow
- ❖ Promote Public Use

ANSI / IESNA RP-8-14

"Roadway" Classifications

Pedestrians and cyclists not likely to be present.

- ❖Freeway: controlled access.
 - ■Type A: Complex & high volume, as in major cities
 - ■Type B: All others w/ controlled access
- Expressway: Partially controlled access

ANSI / IESNA RP-8-14

"Pedestrian Conflict" Classifications

- ❖ High
 - Typical: downtown retail areas
- ❖ Medium
 - Typical: downtown office areas, neighborhood shopping
- Low
 - ■Typical : suburban single family streets

ANSI / IESNA RP-8-14

"Street" Classifications

Pedestrians and cyclists likely to be present to some degree.

- * Major: Principal network for through traffic flow
- ❖ Collector: Connections between Major & Local roads
- ❖ Local: Direct access to residential, commercial, industrial properties

ANSI / IESNA RP-8-14

Pavement Classifications

- * R1 Portland Cement Concrete
- ❖ R2 Asphalt, min. 60% gravel (or with 10-15% artificial brightener), diffuse and specular
- ❖ R3 Asphalt, with dark aggregates, rough texture, slightly specular
- ❖ R4 Asphalt, very smooth texture, mostly specular

ANSI / IESNA RP-8-14

Design Criteria

- Luminance for straight roads
- Illuminance for hilly or curving roads
- ❖ Small Target Visibility (STV): may be used as a "tie breaker." (No criteria given, but higher values are better.)

ANSI / IESNA RP-8-14

Veiling Luminance

- The "veiling" effect produced by bright sources or areas in the visual field
- Results in decreased visual performance and visibility
- ❖ A luminance that is superimposed on the retinal image, which reduces its contrast
- Calculated specific to the Observer's position and line of sight
- Considered: luminaire brightness and background luminance

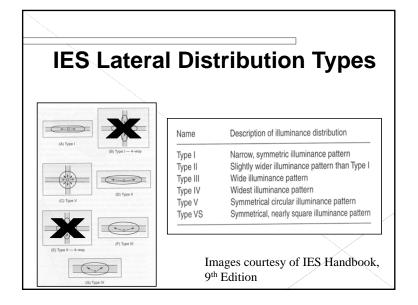
ANSI / IESNA RP-8-14

Luminance

- Calculation of "how bright" the road appears to drivers
- Reflected light

ANSI / IESNA RP-8-14

Illuminance


- Calculates the amount of light incident on the road
- ❖ Apply a multiplier to Luminance to get Illuminance value: based on R-Table

ANSI / IESNA RP-8-14

Luminaire Classifications

Lateral and Longitudinal distribution types, describing the shape or pattern of light on the ground from a luminaire:

- Lateral (across road) light distribution:
 - o Types I V and VS
- Longitudinal (along road) light distribution:
 - o Short, Medium or Long

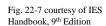
IES Lateral Distribution Types

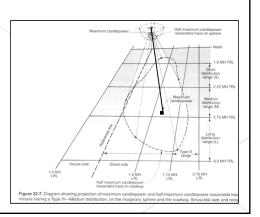
Lateral (across road) light distribution: ½-max candela trace

- **Type I** Up to 1 mtg ht in front of and behind luminaire
- Type II 1.0 1.75 mtg hts in front of lum'r
- Type III 1.75 2.75 mtg hts in front of lum'r
- Type IV >2.75 mtg hts in front of lum'r
- Type V Symmetric all around
- Type VS Symmetric, but more of a square distribution pattern

Officially based on the lateral (across-road, forward) reach of the 1/2-max candela trace.

Fig. 22-7 courtesy of IES Handbook, 9th Edition

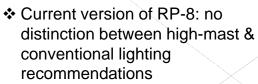

Longitudinal Range Distributions

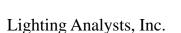

Longitudinal Light Distribution (along the road)

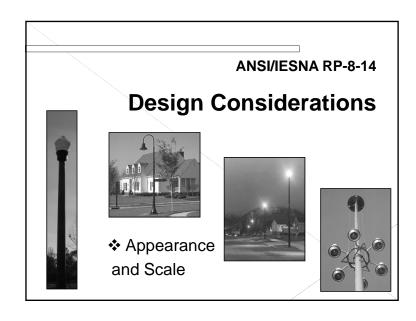
- Short Range max CP reaches between 1.0 2.5 mtg hts
- Medium Range max CP between 2.5 3.75 mtg hts
- Long Range max CP between 3.75 6.0 mtg hts

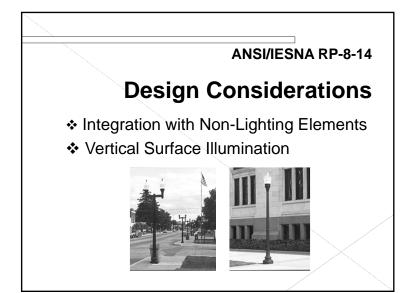
S, M, L Range Distributions

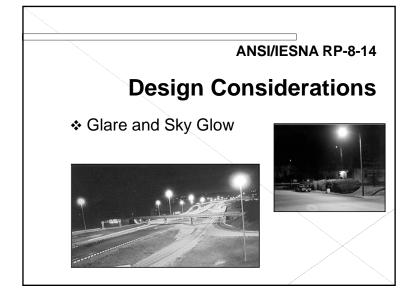
Officially based on the **longitudinal** (along road) reach of the maximum candela value.


Type and Range


- Combining IES Type and Range Distribution in one diagram
- Result: There can be huge differences in performance between luminaires of the same "Type."


ANSI / IESNA RP-8-14


High-mast Lighting


- Greater than 20 meters (65.5 ft)
- ❖ RP-8 editions prior to 2000 allowed lower illuminance levels

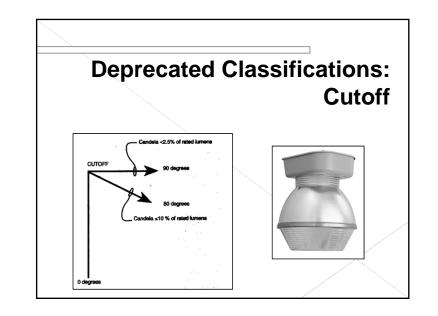
ANSI/IESNA RP-8-14

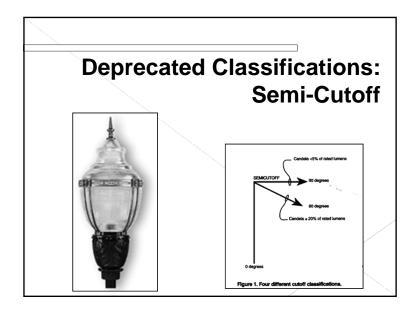
Design Considerations

- Transitional Lighting
 - Gradual decrease in lighting as driver leaves a lighted area.
 - Permits adaptation.
 - Per RP-8-14: Discretion of designer

Other Relevant Stuff (Not in RP-8-14)

- ❖ Deprecated: Cutoff System
- Replacement: Luminaire Classification System (LCS) and BUG Ratings


Deprecated: the Cutoff System


- ❖ Full Cutoff
- Cutoff
- ❖ Semi-Cutoff
- ❖ Non-Cutoff

Note: Now deprecated by the IES.

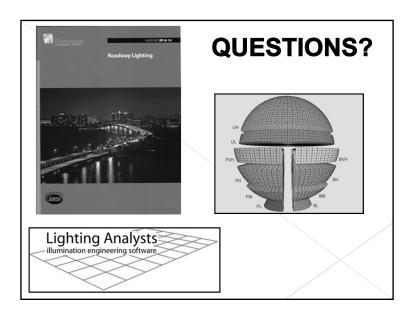
Replaced with the Luminaire Classification System (LCS)

Deprecated Classifications: Full Cutoff No light at or above 90 degrees 80 degrees Candela ±10% of rated lumens

Deprecated Classifications: Non-Cutoff

Non-Cutoff:
No intensity limits

A Cutoff Summary Table


	Full Cutoff	Cutoff	Semi-Cutoff	Non- Cutoff
90°	Candelas = 0 at angles ≥ 90°	Candelas ≤ 2.5% total lamp lumens	Candelas ≤ 5% total lamp lumens	No limit
80°	Candelas ≤ 10% total lamp lumens	Candelas ≤ 10% total lamp lumens	Candelas ≤ 20% total lamp lumens	No limit

Replacement for Cutoff System: Luminaire Classification System (LCS)

- * Replaces the cutoff system
- Describes general distribution of light in 3 zones: Front, Back, and Uplight
 - Zones are further divided into subzones
- Allows designer to control unwanted light while selecting luminaires that will put light where it's needed
- ❖ Ref: IES TM-15-11

ANSI / IES RP-8-14 (And Other Topics)

* Forward zones: • FL: 0-30 deg. vertical • FM: 30-60 deg. vert. • FH: 60-80 deg. vert. • FVH: 80-90 deg. vert. * Back zones: • BL: 0-30 deg. vertical • BM: 30-60 deg. vert. • BH: 60-80 deg. vert. • BVH: 80-90 deg. vert. • BVH: 80-90 deg. vert. • Uplight zones: • UL: 90-100 deg. vert. • UH: 100-180 deg. vert.

BUG Ratings

- Categorizes luminaires according to the amount of Backlight, Uplight and Glare that they have; calculated based on the number of lumens in the various LCS secondary zones.
- May be used to evaluate a luminaire's optical performance related to light trespass, sky glow, and high-angle brightness control.
- ❖ Each rating, B, U & G, has ranges numbered 0 5. Strictest: 0. Example, B4-U0-G1 would be an example of a complete luminaire BUG Rating.
- Ref. IES TM-15-11, Addendum A